Pythonã§ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®è奮ããäžçãæ¢æ±ããŸããããã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒSNNïŒãšãã®å©ç¹ããããŠPythonããŒã«ããã®åéãã©ã®ããã«å€é©ããŠãããã«ã€ããŠåŠã³ãŸãããã
Pythonã«ãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ïŒã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åãè§£ãæãã
人éã®è³ã®æ§é ãšæ©èœã«è§Šçºããããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã¯ãåŸæ¥ã®ã³ã³ãã¥ãŒãã£ã³ã°ã»ã¢ãŒããã¯ãã£ã«ä»£ããææãªéžæè¢ãšããŠæ¥éã«æ³šç®ãéããŠããŸããæ å ±ã鿬¡åŠçããåŸæ¥ã®ã³ã³ãã¥ãŒã¿ãšã¯ç°ãªãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã·ã¹ãã ã¯ãè³ã®äžŠåçã§ãšãã«ã®ãŒå¹çã®é«ãåŠçã¹ã¿ã€ã«ãæš¡å£ããããšãç®æããŠããŸãããã®ã¢ãããŒãã¯ãéåºŠãæ¶è²»é»åãè€éã§åçãªããŒã¿ãåŠçããèœåã«ãããŠå€§ããªå©ç¹ããããããŸããPythonã¯ãè±å¯ãªã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã®ãšã³ã·ã¹ãã ã«ããããã®é©åœã®æåç·ã«ããããã¥ãŒãã¢ãŒãã£ãã¯ã»ã·ã¹ãã ã®æ§æèŠçŽ ã§ããã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒSNNïŒã®éçºãšã·ãã¥ã¬ãŒã·ã§ã³ã®ããã®åŒ·åãªããŒã«ãæäŸããŠããŸãã
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®çè§£
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã¯ãç§ãã¡ãèšç®ãã¢ãããŒãããæ¹æ³ã«ããããã©ãã€ã ã·ããã§ããããã¯ãè³ã®ã¢ãŒããã¯ãã£ãšæäœåçãåçŸããããšãããã®ã§ããããã«ã¯ãçç©åŠçãªãã¥ãŒãã³ãšã·ããã¹ã®æ¯ãèãããšãã¥ã¬ãŒãããããŒããŠã§ã¢ãšãœãããŠã§ã¢ã®èšèšãå«ãŸããŸãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã·ã¹ãã ã®äž»ãªç¹åŸŽã¯ä»¥äžã®éãã§ãã
- ã€ãã³ãé§åååŠçïŒ æ å ±ã¯ãã€ãã³ãïŒäŸïŒãã¥ãŒãã³ã§ã®ã¹ãã€ã¯ïŒãçºçããå Žåã«ã®ã¿åŠçãããããããšãã«ã®ãŒå¹çãé«ããªããŸãã
- äžŠåæ§ïŒ èšç®ã¯ã倿°ã®çžäºæ¥ç¶ããããã¥ãŒãã³å šäœã§åæã«å®è¡ãããŸãã
- éåæåäœïŒ åæããžã¿ã«åè·¯ãšã¯ç°ãªãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã·ã¹ãã ã¯éåæã«åäœããè³ã®é£ç¶çã§åçãªæŽ»åãåæ ããŸãã
- ã¢ããã°ããã³æ··åä¿¡å·åè·¯ïŒ ãã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã¯ããã¥ãŒãã³ãšã·ããã¹ã®çç©åŠçç¹æ§ãæš¡å£ããããã«ãã¢ããã°ãŸãã¯æ··åä¿¡å·åè·¯ããã䜿çšããŸãã
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®æœåšçãªå¿çšç¯å²ã¯åºç¯ã§ãããããŸããŸãªåéã«ããããã®ã§ãã
- 人工ç¥èœïŒAIïŒïŒ ãããšãã«ã®ãŒå¹çãé«ã匷åãªAIã¢ãã«ã®éçºã
- ããããå·¥åŠïŒ é«åºŠãªç¥èŠãšæææ±ºå®èœåãæã€ããããã®äœæã
- æèŠåŠçïŒ ã³ã³ãã¥ãŒã¿ããžã§ã³ãé³å£°èªèãªã©ã®ã¢ããªã±ãŒã·ã§ã³ã®ããã©ãŒãã³ã¹åäžã
- ç¥çµç§åŠç ç©¶ïŒ ã·ãã¥ã¬ãŒã·ã§ã³ãšã¢ããªã³ã°ãéããè³ã®çè§£ã®æ·±åã
ã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒSNNïŒïŒæ§æèŠçŽ
ã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒSNNïŒã¯ãåŸæ¥ã®äººå·¥ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒANNïŒãããçç©åŠçãã¥ãŒãã³ã«è¿ã䌌ã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äžçš®ã§ããSNNã¯ãé£ç¶å€ã䜿çšãã代ããã«ããã¹ãã€ã¯ããšåŒã°ãã颿£ã€ãã³ããä»ããŠéä¿¡ããŸãããããã®ã¹ãã€ã¯ã¯ããã¥ãŒãã³ãæ å ±ãäŒéããããã«äœ¿çšãã黿°ã€ã³ãã«ã¹ã衚ããŸããSNNã®ã³ã¢ã³ã³ããŒãã³ãã¯æ¬¡ã®ãšããã§ãã
- ãã¥ãŒãã³ïŒ ãããã¯ãŒã¯ã®åºæ¬çãªåŠçãŠãããã§ãããçç©åŠçãã¥ãŒãã³ãæš¡å£ããŠããŸããåãã¥ãŒãã³ã¯ä»ã®ãã¥ãŒãã³ããå ¥åãåãåãããã®å ¥åãçµ±åããèé»äœãéŸå€ã«éãããšã¹ãã€ã¯ãçæããŸãã
- ã·ããã¹ïŒ ãã¥ãŒãã³éã®æ¥ç¶ã§ãããè奮æ§ãŸãã¯æå¶æ§ããããŸãããããã¯ãã¥ãŒãã³éã®ã¹ãã€ã¯ã®äŒéã仲ä»ããŸãã
- ã¹ãã€ã¯ã¿ã€ãã³ã°ïŒ ã¹ãã€ã¯ã®æ£ç¢ºãªã¿ã€ãã³ã°ã¯ãæ å ±ãšã³ã³ãŒãã£ã³ã°ãšåŠçã«ãããŠéèŠãªåœ¹å²ãæãããŸãã
SNNã䜿çšããå©ç¹ã¯ä»¥äžã®éãã§ãã
- çç©åŠçåŠ¥åœæ§ïŒ SNNã¯çç©åŠçã«çŸå®çã§ãããè³ã®ã¢ããªã³ã°ãšçè§£ã«é©ããŠããŸãã
- ãšãã«ã®ãŒå¹çïŒ SNNã¯ãç¹ã«ãã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã§å®è£ ãããå ŽåãANNããããšãã«ã®ãŒå¹çãé«ããªãå¯èœæ§ããããŸããããã¯ããã®çãªã€ãã³ãé§åååŠçã«ãããã®ã§ãã
- æéåŠçïŒ SNNã¯æ¬è³ªçã«æéæ å ±ãåŠçã§ãããããé³å£°èªèãæç³»ååæãªã©ã®ã¢ããªã±ãŒã·ã§ã³ã«æé©ã§ãã
- èæ éæ§ïŒ SNNã®åæ£ãããæ§è³ªã«ããããã€ãºãããŒããŠã§ã¢é害ã«å¯ŸããŠããå ç¢ã«ãªããŸãã
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ãšSNNã®ããã®Pythonã©ã€ãã©ãª
Pythonã¯ãç ç©¶è ãéçºè ãSNNãæ§ç¯ãã·ãã¥ã¬ãŒããå±éããããã®è±å¯ãªã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã®ãšã³ã·ã¹ãã ãæäŸããŸããããã€ãã®äž»èŠãªã©ã€ãã©ãªãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®ããŸããŸãªåŽé¢ãä¿é²ããŠããŸãã
1. PyTorch/TensorFlowïŒã«ã¹ã¿ã ãªãã¬ãŒã·ã§ã³ä»ãïŒ
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°å°çšã«èšèšãããŠããããã§ã¯ãããŸããããäž»èŠãªãã£ãŒãã©ãŒãã³ã°ã»ãã¬ãŒã ã¯ãŒã¯ã§ããPyTorchãšTensorFlowã¯ãSNNããµããŒãããããã«æ¡åŒµã§ããŸããããã¯ãã¹ãã€ã¯ãã¥ãŒãã³ãšã·ããã¹ã®æ¯ãèããå®çŸ©ããã«ã¹ã¿ã ãªãã¬ãŒã·ã§ã³ãéããŠå®çŸã§ããŸãããããã®ãªãã¬ãŒã·ã§ã³ã¯ããã¥ãŒãã³ã®èé»äœãå¶åŸ¡ããåŸ®åæ¹çšåŒãšã¹ãã€ã¯ã®çæãå®è£ ããããšããããããŸãã
äŸïŒæŠå¿µïŒïŒ PyTorchã§ãªãŒããŒã»ã€ã³ãã°ã¬ã€ãã»ã¢ã³ãã»ãã¡ã€ã¢ïŒLIFïŒãã¥ãŒãã³ãå®è£ ããã«ã¯ãã«ã¹ã¿ã ã¬ã€ã€ãŒãäœæããå¿ èŠããããŸãã
- ä»ã®ãã¥ãŒãã³ïŒã¹ãã€ã¯ïŒããã®å ¥åãåãåããŸãã
- å ¥åãæéãšãšãã«çµ±åããèé»äœãèç©ããŸãã
- èé»äœãéŸå€ãšæ¯èŒããŸãã
- éŸå€ãè¶ ããå Žåã¯ã¹ãã€ã¯ãçæããŸãã
- èé»äœããªã»ããããŸãã
ãã®ã¢ãããŒãã«ãããç ç©¶è ã¯SNNãéçºããªãããPyTorchãšTensorFlowã§å©çšå¯èœãªæè»æ§ãšæé©åããŒã«ã掻çšã§ããŸãã
2. Nengo
Nengoã¯ãå€§èŠæš¡ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ§ç¯ãšã·ãã¥ã¬ãŒã·ã§ã³å°çšã«èšèšãããPythonããŒã¹ã®ãã¬ãŒã ã¯ãŒã¯ã§ããç¹ã«è³ã®ãããªã·ã¹ãã ã®ã¢ããªã³ã°ã«é©ããŠããŸããNengoã¯é«ã¬ãã«ã®ã¢ãããŒãã䜿çšããŠããããŠãŒã¶ãŒã¯ãã¥ãŒãã³ãã·ããã¹ã®å®è£ ã®äœã¬ãã«ã®è©³çްã§ã¯ãªãããããã¯ãŒã¯å šäœã®ã¢ãŒããã¯ãã£ã«çŠç¹ãåœãŠãããšãã§ããŸãã
Nengoã®äž»ãªæ©èœïŒ
- ãã¥ãŒãã³ã¢ãã«ïŒ LIFãHodgkin-HuxleyãIzhikevichãªã©ãããŸããŸãªãã¥ãŒãã³ã¢ãã«ããµããŒãããŠããŸãã
- ã·ããã¹ãã€ããã¯ã¹ïŒ é å»¶ãšãã£ã«ã¿ãªã³ã°ãçŸå®çã«åããã·ããã¹æ¥ç¶ãå®çŸ©ããã³ã·ãã¥ã¬ãŒãããããã®ããŒã«ãæäŸããŸãã
- ã¹ã±ãŒã©ããªãã£ïŒ å¹ççãªã·ãã¥ã¬ãŒã·ã§ã³æè¡ã䜿çšããŠãå€§èŠæš¡ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ§ç¯ãå¯èœã«ããŸãã
- æé©åïŒ ãããã¯ãŒã¯ããã©ãŒãã³ã¹ãæé©åããå¹ççãªå®è£ ãèŠã€ããããã®ããŒã«ãæäŸããŸãã
Nengoã¯ãç¥çµç§åŠç ç©¶ããã³çç©åŠçãªè³ã®æ©èœãæš¡å£ããããšãç®æããAIã¢ãã«ã®æ§ç¯ã«ãããŠåºã䜿çšãããŠããŸãã
3. Brian
Brianã¯ãæè»æ§ãšäœ¿ãããããéèŠãããã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯çšã®PythonããŒã¹ã®ã·ãã¥ã¬ãŒã¿ãŒã§ãããŠãŒã¶ãŒã¯ãç°¡æœã§æ°åŠçãªè¡šèšã䜿çšããŠãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãã«ãå®çŸ©ã§ããŸããããã«ãããè€éãªã¢ãã«ã衚çŸããããŸããŸãªãã¥ãŒãã³ãšã·ããã¹ã®ãã€ããã¯ã¹ãå®éšããããšã容æã«ãªããŸãã
Brianã®äž»ãªæ©èœïŒ
- æ¹çšåŒããŒã¹ã®ã¢ãã«å®çŸ©ïŒ ãŠãŒã¶ãŒã¯ãåŸ®åæ¹çšåŒããã®ä»ã®æ°åŠç衚çŸã䜿çšããŠãã¥ãŒãã³ããã³ã·ããã¹ã¢ãã«ãå®çŸ©ã§ããŸãã
- æè»ãªãã¥ãŒãã³ã¢ãã«ïŒ åçŽãªã€ã³ãã°ã¬ã€ãã»ã¢ã³ãã»ãã¡ã€ã¢ã»ãã¥ãŒãã³ãããHodgkin-Huxleyã¢ãã«ã®ãããªããè€éãªã¢ãã«ãŸã§ãå¹ åºããã¥ãŒãã³ã¢ãã«ããµããŒãããŠããŸãã
- å¹ççãªã·ãã¥ã¬ãŒã·ã§ã³ïŒ ããã©ãŒãã³ã¹ã®ããã«æé©åãããŠããããŠãŒã¶ãŒã¯å€§èŠæš¡ã§è€éãªãããã¯ãŒã¯ãã·ãã¥ã¬ãŒãã§ããŸãã
- ã³ãã¥ããã£ãµããŒãïŒ åŒ·åãªãŠãŒã¶ãŒã³ãã¥ããã£ããåŠç¿ãšãã©ãã«ã·ã¥ãŒãã£ã³ã°ã®ããã®ãµããŒããšãªãœãŒã¹ãæäŸããŸãã
Brianã¯ãSNNã®ãã€ããã¯ã¹ãæ¢æ±ãããç ç©¶è ãšæè²è ã®äž¡æ¹ã«ãšã£ãŠäººæ°ã®ããéžæè¢ã§ãã
4. Neuron
Neuronã¯ãã€ã§ãŒã«å€§åŠã§æåã«éçºãããã詳现ãªãã¥ãŒã©ã«ã¢ããªã³ã°ã«åºã䜿çšãããŠããã·ãã¥ã¬ãŒã¿ãŒã§ããã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«éå®ãããŠããããã§ã¯ãããŸããããåã ã®ãã¥ãŒãã³ãšãã®çžäºäœçšã®çç©ç©çåŠãã·ãã¥ã¬ãŒãããããã®åŒ·åãªããŒã«ãæäŸããŸããçç©åŠççŸå®ã«é«ãã¬ãã«ã§å¯Ÿå¿ãããã³ã³ããŒãã¡ã³ãã¢ãã«ãå«ãæŽç·Žããããã¥ãŒãã³ã¢ãã«ã®çµ±åããµããŒãããŠããŸããã³ãã³ãã©ã€ã³ã€ã³ã¿ãŒãã§ãŒã¹ãåããŠããŸãããPythonçµç±ã§é§åããããšãã§ããŸãã
5. Lava
Lavaã¯ãIntelã«ãã£ãŠéçºãããPythonããŒã¹ã®ãœãããŠã§ã¢ãã¬ãŒã ã¯ãŒã¯ã§ãã¹ãã€ã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ãå«ããã¥ãŒãã¢ãŒãã£ãã¯ã»ã¢ããªã±ãŒã·ã§ã³ã®éçºãšã·ãã¥ã¬ãŒã·ã§ã³ã«äœ¿çšãããŸãã以äžã®ããã®å æ¬çãªããŒã«ãšã©ã€ãã©ãªãæäŸããŸãã
- ã¢ããªã³ã°ïŒ é«ã¬ãã«ã®æœè±¡åã䜿çšããŠSNNã®èšèšãšã·ãã¥ã¬ãŒã·ã§ã³ãå¯èœã«ããè€éãªãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®å®è£ ãç°¡çŽ åããŸãã
- ãããã³ã°ïŒ SNNããã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã»ãã©ãããã©ãŒã ã«ãããã³ã°ããããšãå¯èœã«ãããšãã«ã®ãŒå¹çã®é«ãããŒããŠã§ã¢ãžã®AIã¢ããªã±ãŒã·ã§ã³ã®å±éã容æã«ããŸãã
- å®è¡ïŒ ã€ãã³ãé§ååã·ãã¥ã¬ãŒã·ã§ã³ã䜿çšããŠããã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ããã³æšæºããã»ããµã§SNNãå®è¡ããããã®æ©èœãæäŸããŸãã
Lavaã¯ããã¥ãŒãã¢ãŒãã£ãã¯ã»ã¢ã«ãŽãªãºã èšèšãšããŒããŠã§ã¢å®è£ ã®éã®ã®ã£ãããåãããã©ãããã©ãŒã ãæäŸããããšãç®æããŠãããç ç©¶è ãéçºè ã®ç ç©¶ãã補åéçºãŸã§ã®éã®ãããµããŒãããŸããããã«ãããæçµçã«ã¯å¹ åºãã¢ããªã±ãŒã·ã§ã³ã«ãšãã«ã®ãŒå¹çã®é«ãAIãœãªã¥ãŒã·ã§ã³ãæäŸã§ããŸããäŸãã°ãã³ã³ãã¥ãŒã¿ããžã§ã³ã®åéã§ã¯ããã®ãããªãã¬ãŒã ã¯ãŒã¯ã«ããããšãã«ã®ãŒå¹çã®é«ããœãªã¥ãŒã·ã§ã³ã®èšèšãå¯èœã«ãªããŸãã
å®è·µçãªäŸãšãŠãŒã¹ã±ãŒã¹
SNNã¯ããŸããŸãªåéã§å¿çšãããŠããŸãã以äžã«ããã€ãã®äŸã瀺ããŸãã
1. ã³ã³ãã¥ãŒã¿ããžã§ã³
SNNã¯ãç©äœèªèãç»ååé¡ããã®ä»ã®ã³ã³ãã¥ãŒã¿ããžã§ã³ã¿ã¹ã¯ã«äœ¿çšã§ããŸããç»åãã¹ãã€ã¯åãšããŠãšã³ã³ãŒãããããšã«ãããèŠèŠæ å ±ãå¹ççã«åŠçã§ããŸããããšãã°ããšããžæ€åºã·ã¹ãã ã§ã¯ãåãã¥ãŒãã³ãç»åã®ãã¯ã»ã«ã衚ããçºç«çãé«ãã»ã©åŒ·ããšããžã瀺ããŸãã
äŸïŒãšããžæ€åºïŒïŒ å ¥åç»åã¯ãç¶²èãã¥ãŒãã³ã®çºç«ãæš¡å£ããã¹ãã€ã¯åã«å€æãããŸããæåã®å±€ã®ãã¥ãŒãã³ããšããžãæ€åºãããšããžãååšãããšããé »ç¹ã«çºç«ããŸããåŸç¶ã®å±€ã¯ãããã®ã¹ãã€ã¯ãã¿ãŒã³ãåŠçããŠããªããžã§ã¯ããŸãã¯ç¹åŸŽãèå¥ããŸããããã¯ãç¹ã«å°çšã®ãã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã§ã¯ãåŸæ¥ã®CNNããŒã¹ã®ç»ååŠçãããå€§å¹ ã«ãšãã«ã®ãŒå¹çãé«ããªãå¯èœæ§ããããŸãã
2. é³å£°èªè
SNNã¯ããªãŒãã£ãªä¿¡å·ãã¹ãã€ã¯åãšããŠãšã³ã³ãŒãããããšã«ãããå¹ççã«åŠçã§ããŸããã¹ãã€ã¯ã®æéçæ§è³ªã¯ãé³å£°ã®åçãªæ å ±ããã£ããã£ããã®ã«é©ããŠããŸããSNNã¯ãé³çŽ èªèã話è èå¥ãªã©ã®ã¿ã¹ã¯ã«äœ¿çšãããŠããŸãã
äŸïŒé³çŽ èªèïŒïŒ é³å£°å ¥åã¯ãé³ã®åšæ³¢æ°ã衚ãã¹ãã€ã¯åã«å€æãããŸãããããã¯ãŒã¯å ã®ãã¥ãŒãã³ã¯ãç¹å®ã®é³çŽ ã«å¿çããããã«ãã¬ãŒãã³ã°ãããŸããã¹ãã€ã¯ã®ã¿ã€ãã³ã°ãšåšæ³¢æ°ã®ãã¿ãŒã³ã¯ãåé¡ã«äœ¿çšãããŸããããã«ãããã·ã¹ãã ã¯ç°ãªã話è ã話ãåèªãèªèã§ããŸãã
3. ããããå·¥åŠ
SNNã¯ããããã®å¶åŸ¡ã«äœ¿çšã§ãããããããæææ±ºå®ãè¡ããç°å¢ãšå¯Ÿè©±ã§ããããã«ãªããŸããã«ã¡ã©ããã®ç»åãã¿ããã»ã³ãµãŒããã®ããŒã¿ãªã©ã®æèŠå ¥åãåŠçããã¢ãŒã¿ãŒã³ãã³ããçæã§ããŸãããããã®ã¿ã¹ã¯ã«SNNã䜿çšãããšãããããå¶åŸ¡ããããšãã«ã®ãŒå¹çãé«ããå ç¢ã«ããããšãã§ããŸãã
äŸïŒããããããã²ãŒã·ã§ã³ïŒïŒ ããããã¯SNNã䜿çšããŠãã«ã¡ã©ç»åãè·é¢æž¬å®ãªã©ã®æèŠå ¥åãåŠçããŸããSNNã¯ãé害ç©ãèå¥ããç®çã®ç®çå°ã«åãã£ãŠããã²ãŒãããããã«ãã¬ãŒãã³ã°ãããŸããSNNã«ãã£ãŠçæãããã¹ãã€ã¯ã¯ãããããã®ã¢ã¯ãã¥ãšãŒã¿ãçŽæ¥å¶åŸ¡ããŸããããã¯ãç°å¢èŠå ãšã®åãã調æŽããè³ã®èœåãæš¡å£ããŠããŸãã
4. æç³»ååæ
SNNã¯ãæéæ å ±ãåŠçããåºæã®èœåã«ãããæç³»åããŒã¿ã®åŠçã«éåžžã«é©ããŠããŸããã¢ããªã±ãŒã·ã§ã³ã«ã¯ãéèã¢ããªã³ã°ã倩æ°äºå ±ãç°åžžæ€ç¥ãå«ãŸããŸããã¹ãã€ã¯æŽ»åã¯ãæéçäŸåé¢ä¿ãšåçãã¿ãŒã³ãæ¬è³ªçã«ãã£ããã£ããŸãã
äŸïŒéèã¢ããªã³ã°ïŒïŒ SNNã¯ãæ ªäŸ¡ã®æç³»ååæãè¡ãããã«ãã¬ãŒãã³ã°ãããŸããå ¥åã¯ã¹ãã€ã¯åãšããŠãšã³ã³ãŒããããŸãããããã¯ãŒã¯ã¯ãå°æ¥ã®æ ªäŸ¡ã®åããäºæž¬ããããã«èšèšãããŠããŸãããããã¯ãŒã¯ã¯ãã¹ãã€ã¯ã®ã¿ã€ãã³ã°ãšé »åºŠã®ãã¿ãŒã³ã䜿çšããŠãäŸ¡æ Œãã¬ã³ããåŠç¿ããã³äºæž¬ããŸããããã¯ãéèæŠç¥ãšåžå Žåæã«ãããŠå©ç¹ãããããå¯èœæ§ããããŸãã
課é¡ãšä»åŸã®æ¹åæ§
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ãšSNNã¯å€§ããªå¯èœæ§ãç§ããŠããŸãããããã€ãã®èª²é¡ãæ®ã£ãŠããŸãããããã®ããŒãã«ãå æããããšããããåºç¯ãªæ®åãžã®éãéãã§ãããã
- SNNã®ãã¬ãŒãã³ã°ïŒ SNNã®ãã¬ãŒãã³ã°ã¯ãANNã®ãã¬ãŒãã³ã°ãããå°é£ãªå ŽåããããŸããç ç©¶è ã¯ãããã«å¯ŸåŠããããã«ãã¹ãã€ã¯ã¿ã€ãã³ã°äŸåå¯å¡æ§ïŒSTDPïŒãªã©ã®æ°ãããã¬ãŒãã³ã°ã¢ã«ãŽãªãºã ãç©æ¥µçã«éçºããŠããŸãã
- ããŒããŠã§ã¢ã®å¶éïŒ å°çšã®ãã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã®éçºã¯ãŸã åææ®µéã«ãããŸãããããã®ã·ã¹ãã ã®æ¡åŒµãšããã©ãŒãã³ã¹ã®æé©åãéèŠã§ãã
- ãœãããŠã§ã¢ãšã³ã·ã¹ãã ïŒ ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®Pythonãšã³ã·ã¹ãã ã¯æé·ããŠããŸãããè€éãªSNNã®æ§ç¯ãã·ãã¥ã¬ãŒã·ã§ã³ãå±éããµããŒãããããã«ããœãããŠã§ã¢ããŒã«ã®ãããªãéçºãå¿ èŠã§ãã
- çç©åŠçã¢ãã«ãšå·¥åŠçå¿çšéã®ã®ã£ããã®æ©æž¡ãïŒ å·¥åŠçå¿çšã«æé©åããªãããçç©åŠçãã¥ãŒãã³ãæ£ç¢ºã«ã¢ãã«åããããšã¯ãéèŠãªç ç©¶åéã§ãã
- æšæºåïŒ æšæºåãããã€ã³ã¿ãŒãã§ãŒã¹ãšãããã³ã«ã確ç«ããããšã¯ãçžäºéçšæ§ãä¿é²ãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã·ã¹ãã ã®éçºãå éããŸãã
ãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®ä»åŸã®æ¹åæ§ã«ã¯ã以äžãå«ãŸããŸãã
- æ°ãããã¥ãŒãã¢ãŒãã£ãã¯ã»ããŒããŠã§ã¢ã®éçºïŒ ã¡ã ãªã¹ã¿ãã¹ãã€ã¯ããããªã©ã®åéã§ã®é²æ©ãããã®åéãåé²ãããã§ãããã
- ãã¬ãŒãã³ã°ã¢ã«ãŽãªãºã ã®é²æ©ïŒ SNNã®ããã®ããå¹ççã§å¹æçãªãã¬ãŒãã³ã°æ¹æ³ã®éçºã
- ä»ã®AIæè¡ãšã®çµ±åïŒ SNNãšãã£ãŒãã©ãŒãã³ã°ã匷ååŠç¿ãªã©ã®ä»ã®AIææ³ãçµã¿åããããã€ããªããã·ã¹ãã ã®äœæã
- æ°ããã¢ããªã±ãŒã·ã§ã³ã®æ¢çŽ¢ïŒ å»ç蚺æãç§åŠç ç©¶ãªã©ããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®æ°ãã驿°çãªçšéã®çºèŠã
çµè«ïŒã³ã³ãã¥ãŒãã£ã³ã°ã®æªæ¥
Pythonã¯ãç ç©¶è ãéçºè ããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ãšSNNã«åãçµãããã®åªãããã©ãããã©ãŒã ãæäŸããŸããè±å¯ãªã©ã€ãã©ãªãšã³ãã¥ããã£ãµããŒãã«ãããPythonã¯ãã®æ°èåéã®æåç·ã«ãããŸãã課é¡ã¯æ®ã£ãŠããŸããããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®æœåšçãªå©ç¹ïŒãšãã«ã®ãŒå¹çãå ç¢æ§ãè€éãªæéããŒã¿ãåŠçããèœåãªã©ïŒã¯ç¡èŠããã«ã¯å€§ããããŸããç ç©¶ãé²ã¿ãæè¡ãæçããã«ã€ããŠããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ãšSNNã¯ã人工ç¥èœãšãã®å ã®æ¯èгãå€é©ãããšçŽæããŠããŸãã
ãã®æè¡ã®äžçç圱é¿ã¯ãã§ã«æããããŠããŸãããã¥ã³ãã³å·¥ç§å€§åŠïŒãã€ãïŒãã«ãªãã©ã«ãã¢å€§åŠããŒã¯ã¬ãŒæ ¡ïŒç±³åœïŒãETHãã¥ãŒãªããïŒã¹ã€ã¹ïŒãªã©ã®äžçäžã®ç ç©¶æ©é¢ãããã¢ãžã¢ãã¢ããªã«ã®æ°èããã¯ãããŸã§ãSNNãšãã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®éçºã¯å ±åäœæ¥ã§ãã
çç©åŠçãªã€ã³ã¹ãã¬ãŒã·ã§ã³ããå®çšçãªå¿çšãŸã§ã®éã®ãã«ã¯ãã°ããŒãã«ãªååãå¿ èŠã§ããPythonã§æžããããªãŒãã³ãœãŒã¹ããŒã«ã¯ããã®ååãä¿é²ãããã¥ãŒãã¢ãŒãã£ãã¯ã»ã³ã³ãã¥ãŒãã£ã³ã°ã®å©ç¹ãäžçäžã§ã¢ã¯ã»ã¹å¯èœã§ããããšãä¿èšŒããããã®éµãšãªããŸããPythonãæŽ»çšãããã¥ãŒãã¢ãŒãã£ãã¯ã»ãã¶ã€ã³ã®ååãåãå ¥ããããšã§ãç§ãã¡ã¯è³ã®èšç®èœåãè§£ãæŸã¡ã匷åã§å¹ççã§æç¶å¯èœãªéçºã®ååã«æ²¿ã£ãã€ã³ããªãžã§ã³ãã»ã·ã¹ãã ã®æªæ¥ãæ§ç¯ã§ããŸããSNNã®æ¢æ±ã¯ãåã«è³ãåçŸããã ãã§ãªããèšç®ã«ãããæ°ããå¯èœæ§ãåºæ¿ããã€ãããŒã·ã§ã³ãä¿é²ããäžçã®æãå·®ãè¿«ã£ã課é¡ã®ããã€ãã«åãçµãããšã§ãã